All Issue

2023 Vol.17, Issue 6 Preview Page

Research Article

30 December 2023. pp. 497-516
Abstract
References
1
Abdulmunem, A.R., Samin, P.M., Rahman, H.A., Hussien, H.A., Mazali, I.I., Ghazali, H. (2020). Experimental and numerical investigations on the effects of different tilt angles on the phase change material melting process in a rectangular container. Journal of Energy Storage, 32, 101914. 10.1016/j.est.2020.101914
2
Abuşka, M., Şevik, S., Kayapunar, A. (2019). A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Applied Thermal Engineering, 148, 684-693. 10.1016/j.applthermaleng.2018.11.056
3
Al-Abidi, A.A., Mat, S., Sopian, K., Sulaiman, M., Mohammad, A.T. (2013). Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied thermal engineering, 53, 147-156. 10.1016/j.applthermaleng.2013.01.011
4
Al-Kayiem, H.H., Lin, S.C. (2014). Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Solar Energy, 109, 82-92. 10.1016/j.solener.2014.08.021
5
Alva, G., Lin, Y., Fang, G. (2018). An overview of thermal energy storage systems. Energy, 144, 341-378. 10.1016/j.energy.2017.12.037
6
Bahiraei, M., Heshmatian, S. (2017). Application of a novel biological nanofluid in a liquid block heat sink for cooling of an electronic processor: thermal performance and irreversibility considerations. Energy Conversion and Management, 149, 155-167. 10.1016/j.enconman.2017.07.020
7
Barlev, D., Vidu, R., Stroeve, P. (2011). Innovation in concentrated solar power. Solar Energy Materials and Solar Cells, 95, 2703-2725. 10.1016/j.solmat.2011.05.020
8
Buddhi, D., Sharma, S., Sharma, A. (2003). Thermal performance evaluation of a latent heat storage unit for late evening cooking in a solar cooker having three reflectors. Energy conversion and management, 44, 809-817. 10.1016/S0196-8904(02)00106-1
9
Crespo, A., Barreneche, C., Ibarra, M., Platzer, W. (2019). Latent thermal energy storage for solar process heat applications at medium-high temperatures-A review. Solar Energy, 192, 3-34. 10.1016/j.solener.2018.06.101
10
Del Amo, A., Martínez-Gracia, A., Pintanel, T., Bayod-Rújula, A., Torné, S. (2020). Analysis and optimization of a heat pump system coupled to an installation of PVT panels and a seasonal storage tank on an educational building. Energy and Buildings, 226, 110373. 10.1016/j.enbuild.2020.110373
11
Engeland, K., Borga, M., Creutin, J.D., François, B., Ramos, M.H., Vidal, J.P. (2017). Space-time variability of climate variables and intermittent renewable electricity production-A review. Renewable and Sustainable Energy Reviews, 79, 600-617. 10.1016/j.rser.2017.05.046
12
Gasia, J., Tay, N.S., Belusko, M., Cabeza, L.F., Bruno, F. (2017). Experimental investigation of the effect of dynamic melting in a cylindrical shell-and-tube heat exchanger using water as PCM. Applied Energy, 185, 136-145. 10.1016/j.apenergy.2016.10.042
13
Ines, M., Paolo, P., Roberto, F., Mohamed, S. (2019). Experimental studies on the effect of using phase change material in a salinity-gradient solar pond under a solar simulator. Solar Energy, 186, 335-346. 10.1016/j.solener.2019.05.011
14
Javadi, F., Metselaar, H., Ganesan, P. (2020). Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Solar Energy, 206, 330-352. 10.1016/j.solener.2020.05.106
15
Kalidasan, B., Pandey, A., Shahabuddin, S., Samykano, M., Thirugnanasambandam, M., Saidur, R. (2020). Phase change materials integrated solar thermal energy systems: Global trends and current practices in experimental approaches. Journal of Energy Storage, 27, 101118. 10.1016/j.est.2019.101118
16
Kalidasan, B., Srinivas, T. (2014). Study on effect of number of transparent covers and refractive index on performance of solar water heater. Journal of Renewable Energy, 2014, 757618. 10.1155/2014/757618
17
Kalogirou, S.A. (2004). Solar thermal collectors and applications. Progress in energy and combustion science, 30, 231-295. 10.1016/j.pecs.2004.02.001
18
Kalogirou, S.A., Lloyd, S. (1992). Use of solar parabolic trough collectors for hot water production in Cyprus. A feasibility study. Renewable Energy, 2, 117-124. 10.1016/0960-1481(92)90097-M
19
Kelly, N.J., Tuohy, P.G., Hawkes, A.D. (2014). Performance assessment of tariff- based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering. Applied Thermal Engineering, 71, 809-820. 10.1016/j.applthermaleng.2013.12.019
20
Kumar, L., Ahmed, J., El Haj Assad, M., Hasanuzzaman, M. (2022). Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review. Energies, 15, 8501. 10.3390/en15228501
21
Kumar, L., Hasanuzzaman, M., Rahim, N. (2019). Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Conversion and Management, 195, 885-908. 10.1016/j.enconman.2019.05.081
22
Li, C., Zhang, B., Xie, B., Zhao, X., Chen, J., Chen, Z., Long, Y. (2019). Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater. Sustainable Cities and Society, 44, 458-464. 10.1016/j.scs.2018.10.041
23
Ma, Z., Bao, H., Roskilly, A.P. (2018). Feasibility study of seasonal solar thermal energy storage in domestic dwellings in the UK. Solar Energy, 162, 489-499. 10.1016/j.solener.2018.01.013
24
Mahfuz, M., Anisur, M., Kibria, M., Saidur, R., Metselaar, I. (2014). Performance investigation of thermal energy storage system with Phase Change Material (PCM) for solar water heating application. International Communications in Heat and Mass Transfer, 57, 132-139. 10.1016/j.icheatmasstransfer.2014.07.022
25
Meister, C., Beausoleil-Morrison, I. (2021). Experimental and modelled performance of a building-scale solar thermal system with seasonal storage water tank. Solar Energy, 222, 145-159. 10.1016/j.solener.2021.05.025
26
Mills, D. (2004). Advances in solar thermal electricity technology. Solar Energy, 76, 19-31. 10.1016/S0038-092X(03)00102-6
27
Morrison, D., Abdel-Khalik, S. (1978). Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Solar Energy, 20, 57-67. 10.1016/0038-092X(78)90141-X
28
Mousa, H., Naser, J., Gujarathi, A.M., Al-Sawafi, S. (2019). Experimental study and analysis of solar still desalination using phase change materials. Journal of Energy Storage, 26, 100959. 10.1016/j.est.2019.100959
29
Palomba, V., Brancato, V., Frazzica, A. (2017). Experimental investigation of a latent heat storage for solar cooling applications. Applied energy, 199, 347-358. 10.1016/j.apenergy.2017.05.037
30
Pinamonti, M., Beausoleil-Morrison, I., Prada, A., Baggio, P. (2021). Water-to-water heat pump integration in a solar seasonal storage system for space heating and domestic hot water production of a single-family house in a cold climate. Solar Energy, 213, 300-311. 10.1016/j.solener.2020.11.052
31
Salunkhe, P.B., Shembekar, P.S. (2012). A review on effect of phase change material encapsulation on the thermal performance of a system. Renewable and sustainable energy reviews, 16, 5603-5616. 10.1016/j.rser.2012.05.037
32
Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, 318-345. 10.1016/j.rser.2007.10.005
33
Sopian, K.B., Sohif, M., Alghoul, M. (2009). Output air temperature prediction in a solar air heater integrated with phase change material. European Journal of Scientific Research, 27, 334-341.
34
Suman, S., Khan, M.K., Pathak, M. (2015). Performance enhancement of solar collectors-A review. Renewable and Sustainable Energy Reviews, 49, 192-210. 10.1016/j.rser.2015.04.087
35
Wang, F., Lin, W., Ling, Z., Fang, X. (2019). A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance. Solar Energy Materials and Solar Cells, 191, 218-234. 10.1016/j.solmat.2018.11.016
36
Wang, Q., Rao, Z., Huo, Y., Wang, S. (2016). Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system. International Journal of Thermal Sciences, 102, 9-16. 10.1016/j.ijthermalsci.2015.11.005
37
Wu, S., Zhu, D., Zhang, X., Huang, J. (2010). Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM). Energy & Fuels, 24, 1894-1898. 10.1021/ef9013967
38
Yousef, M.S., Hassan, H., Kodama, S., Sekiguchi, H. (2019). An experimental study on the performance of single slope solar still integrated with a PCM-based pin-finned heat sink. Energy Procedia, 156, 100-104. 10.1016/j.egypro.2018.11.102
39
Zeng, J., Liu, L., Liang, X., Chen, S., Yuan, J. (2021). Evaluating fuel consumption factor for energy conservation and carbon neutral on an industrial thermal power unit. Energy, 232, 120887. 10.1016/j.energy.2021.120887
40
Zeng, J., Sun, L., Xu, F., Tan, Z.C., Zhang, J., Zhang, T. (2007). Study of a PCM based energy storage system containing Ag nanoparticles. Journal of Thermal Analysis and Calorimetry, 87, 371-375. 10.1007/s10973-006-7783-z
41
Sarathkumar, P., Sivaram, A., Rajavel, R., Kumar, R.P., Krishnakumar, S. (2017). Experimental investigations on the performance of a solar pond by using encapsulated Pcm with nanoparticles. Materials Today: Proceedings, 4, 2314-2322. 10.1016/j.matpr.2017.02.080
42
Weiss, W., Spörk-Dür, M. (2021). Solar heat world wide. Solar heating & cooling programme, International Energy Agency. DOI: 10.18777/ieashc-shw-2022-0001. 10.18777/ieashc-shw-2021-0001
43
ASTM C518. (2010). Standard Test Method for Steady-state Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. Standard American Society for Testing and Materials.
44
American Water Heaters. (2023). Integrated Solar Pump Stations. Available at: https://www.americanwaterheater.com/residential/solar/solar-pump-stations [Accessed on 27/12/2023].
45
Korea Energy Agency Renewable Energy Center. (2023). Annual renewable energy production. Available at: https://www.knrec.or.kr/biz/statistics/supply/supply01_01_list.do. [Accessed on 27/12/2023].
Information
  • Publisher :Korean Institute of Architectural Sustainable Environment and Building Systems
  • Publisher(Ko) :한국건축친환경설비학회
  • Journal Title :Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • Journal Title(Ko) :한국건축친환경설비학회논문집
  • Volume : 17
  • No :6
  • Pages :497-516
  • Received Date : 2023-12-20
  • Revised Date : 2023-12-26
  • Accepted Date : 2023-12-26
Journal Informaiton Journal of Korean Institute of Architectural Sustainable Environment and Building Systems Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close