All Issue

2025 Vol.19, Issue 5

Research Article

30 October 2025. pp. 191-200
Abstract
References
1

Adelekan, D.S., Ohunakin, O.S., Paul, B.S. (2022). Artificial Intelligence Models for Refrigeration, Air Conditioning and Heat Pump Systems. Energy Reports, 8, 8451-8466.

10.1016/j.egyr.2022.06.062
2

Afram, A., Janabi-Sharifi, F., Fung, A.S., Raahemifar, K. (2017). Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy and Buildings, 141, 96-113.

10.1016/j.enbuild.2017.02.012
3

Go, S.M., Park, H.E., Song, Y.H. (2024). Development of IDC Energy Consumption Predicted Model by Control Conditions using AI. Journal of Korean Institute of Architectural Sustainable Environment and Building System, 18(5), 441-450.

4

Lecun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

10.1038/nature14539
5

Lee, D., Ooka, R., Matsuda, Y., Ikeda, S., Choi, W. (2022). Experimental Analysis of Artificial Intelligence-based Model Predictive Control for Thermal Energy Storage under Different Cooling Load Conditions. Sustainable Cities and Society, 211(15), 103700.

10.1016/j.scs.2022.103700
6

Lee, J.H., Cho, Y.H. (2023). Development of Control Algorithm for Economizer System using Load Prediction Model. Journal of the Korean Solar Energy Society, 43(3), 1-10.

10.7836/kses.2023.43.3.001
7

Lee, S.J., Dao, V.Q. (2024). Energy-Efficient Operation Simulation of Factory HVAC System based on Machine Learning. Journal of Korea Society of Industrial Information Systems, 29(2), 47-54.

10.9723/JKSIIS.2024.29.2.047
8

Merabet, G.H., Essaaidi, M., Haddou, M.B., Kabbaj, M.I. (2021). Intelligent Building Control Systems for Thermal Comfort and Energy-efficiency: A Systermatic Review of Artificial Intelligence-assisted Techniques. Renewable and Sustainable Energy Reviews, 144, 110969.

10.1016/j.rser.2021.110969
9

Sun, K., Luo, N., Luo, X., Hong, T. (2021). Prototype energy models for data centers. Energy and Buildings, 231, 110603.

10.1016/j.enbuild.2020.110603
10

Yayla, A., Swierczewska, K.S., Kaya, M., Karaca, B., Arayici, Y., Ayözenn, Y.E., Tokdemir, O.B. (2022). Artificial Intelligence (AI)-Based Occupant-Centric Heating Ventilation and Air Conditioning (HVAC) Control System for Multi-Zone Commercial Buildings. Sustainability, 14(23), 16107.

10.3390/su142316107
11

Yeon, S.H., Lee, K.H. (2024). Developing a DNN-Based Control Algorithm for Optimizing AHU Discharge Air and Cooling Water Temperatures in an Office Building. Korean Journal of Air-Conditioning and Refrigeration Engineering, 36(11), 535-545.

10.6110/KJACR.2024.36.11.535
12

Zhou, S.L., Shah, A.A., Leung, P.K., Zhu, X. (2023). A Comprehensive Review of the Applications of Machine Learning for HVAC. Decarbon, 2, 100023.

10.1016/j.decarb.2023.100023
13

ASHRAE Guideline 14. (2002). Measurement of Energy, Demand, and Water Savings.

14

ASHRAE. (2019). ASHRAE Handbook Heating, Ventilating, and Air-conditioning Applications.

Information
  • Publisher :Korean Institute of Architectural Sustainable Environment and Building Systems
  • Publisher(Ko) :한국건축친환경설비학회
  • Journal Title :Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • Journal Title(Ko) :한국건축친환경설비학회논문집
  • Volume : 19
  • No :5
  • Pages :191-200
  • Received Date : 2025-07-29
  • Revised Date : 2025-09-08
  • Accepted Date : 2025-09-09
Journal Informaiton Journal of Korean Institute of Architectural Sustainable Environment and Building Systems Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close