All Issue

2022 Vol.16, Issue 3 Preview Page

Research Article

30 June 2022. pp. 206-218
Aryal, A., Becerik-Gerber, B. (2018). Energy consequences of Comfort-driven temperature setpoints in office buildings. Energy and Buildings, 177, 33-46. 10.1016/j.enbuild.2018.08.013
De Dear, R.J., Brager, G.S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55, Energy and Buildings, 34, 549-561. 10.1016/S0378-7788(02)00005-1
Dhaka, S., Mathur, J., Brager, G., Honnekeri, A. (2015). Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India, Building and Environment, 86, 17-28. 10.1016/j.buildenv.2014.11.024
Gauthier, S., Bourikas, L., Al-Atrash, F., Bae, C., Chun, C., de Dear, R., Hellwig, R.T., Kim, J., Kwon, S., Mora, R., Pandya, H., Rawal, R., Tartarini, F., Upadhyay, R., Wagner, A. (2020). The colours of comfort: From thermal sensation to person-centric thermal zones for adaptive building strategies. Energy and Buildings, 216, 109936. 10.1016/j.enbuild.2020.109936
Hawila, A. A.-W., Merabtine, A., Chemkhi, M., Bennacer, R., Troussier, N. (2018). An analysis of the impact of PMV-based thermal comfort control during heating period: A case study of highly glazed room. Journal of Building Engineering, 20, 353-366. 10.1016/j.jobe.2018.08.010
Humphreys. M.A., Rijal, H.B., Nicol, J.F. (2013). Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Building and Environment. 63, 40-55. 10.1016/j.buildenv.2013.01.024
Kim, S.K., Hon, W.H., Hwang, J.H., Jung, M.S., Park, Y.S. (2020). Optimal Control Method for HVAC Systems in Offices with a Control Algorithm Based on Thermal Environment. Buildings, 10(5), 95. 10.3390/buildings10050095
Kim, S.K., Ryu, J.H., Seo, H.C., Hong, W.H. (2022). Understanding Occupants' Thermal Sensitivity According to Solar Radiation in an Office Building with Glass Curtain Wall Structure. Buildings, 12(1), 58. 10.3390/buildings12010058
Kumar, S., Mathur, J., Mathur, S., Singh, M.K., Loftness, V. (2016). An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India, Building and Environment, 109, 135-153. 10.1016/j.buildenv.2016.09.023
Rupp, R.F., Kim, J.S. Ghisi, E., Dear, R.D. (2019). Thermal sensitivity of occupants in different building typologies: The Griffiths Constant is a Variable. Energy and Buildings, 200, 11-20. 10.1016/j.enbuild.2019.07.048
Schweiker, M., Abdul-Zahra, A., André, M., Al-Atrash, F., Al-Khatri, H. et al. (2019). The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Sci. Data, 6, 1-10. 10.1038/s41597-019-0272-631772199PMC6879730
Schweiker , M., André, M., Al-Atrash, F., Al-Khatri, H., et al. (2020). Evaluating assumptions of scales for subjective assessment of thermal environments - do laypersons perceive them the way, we reserachers believe?. Energy and Buildings, 211, 109761. 10.1016/j.enbuild.2020.109761
Wang, Z., Hong, T. (2020). Learning occupants' indoor comfort temperature through a Bayesian inference approach for office buildings in United States, Renewable and Sustainable Energy Reviews, 119, 109593. 10.1016/j.rser.2019.109593
Yang, L., Zheng, W., Mao, Y., Lam, J.C., Zhai, Y. (2015). Thermal adaptive models in built environment and its energy implications in Eastern China, Energy Procedia, 75, 1413-1418. 10.1016/j.egypro.2015.07.237
Yoganathan, D., Kondepudi, S., Kalluri, B., Manthapuri, S. (2016). Optimal sensor placement strategy for office buildings using clustering algorithms. Energy and Buildings, 158, 1206-1225. 10.1016/j.enbuild.2017.10.074
Zhang, N., Cao, B., Wang, Z., Zhu, Y., Lin, B. (2017). A comparison of winter indoor thermal environment and thermal comfort between regions in Europe, North America, and Asia. Build. Environ, 117, 208-217. 10.1016/j.buildenv.2017.03.006
Griffiths, I.D. (1988). Sloar energy applications to buildings and solar radiation data, in: T.C., Steemers (Ed.). Proceedings of the EC Contractors' Meeting Held in Brussels, Belgium, 1 and 2 October 1987, Dordrecht: Springer, Netherlands, 110-114.
Schweiker, M., Wagner, A. (2018). Interactions between thermal and visual (dis-) comfort and related adaptive actions through cluster analyses. BauSIM2018-7. Deutsch-Österreichische IBPSA-Konferenz Tagungsband, Karlsruhe.
ASHRAE 55-2013. (2013). Ashrae Handbook: Fundamentals, Atlanta, GA.
ISO, ISO 10551. (2001). Ergonomics of the thermal environment - Assessment of the influence of the thermal environment using subjective judgment scales.
  • Publisher :Korean Institute of Architectural Sustainable Environment and Building Systems
  • Publisher(Ko) :한국건축친환경설비학회
  • Journal Title :Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • Journal Title(Ko) :한국건축친환경설비학회논문집
  • Volume : 16
  • No :3
  • Pages :206-218
  • Received Date :2022. 05. 09
  • Revised Date :2022. 06. 27
  • Accepted Date : 2022. 06. 29
Journal Informaiton Journal of Korean Institute of Architectural Sustainable Environment and Building Systems Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • NRF
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close