All Issue

2022 Vol.16, Issue 3 Preview Page

Research Article

30 June 2022. pp. 206-218
Abstract
References
1
Aryal, A., Becerik-Gerber, B. (2018). Energy consequences of Comfort-driven temperature setpoints in office buildings. Energy and Buildings, 177, 33-46. 10.1016/j.enbuild.2018.08.013
2
De Dear, R.J., Brager, G.S. (2002). Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55, Energy and Buildings, 34, 549-561. 10.1016/S0378-7788(02)00005-1
3
Dhaka, S., Mathur, J., Brager, G., Honnekeri, A. (2015). Assessment of thermal environmental conditions and quantification of thermal adaptation in naturally ventilated buildings in composite climate of India, Building and Environment, 86, 17-28. 10.1016/j.buildenv.2014.11.024
4
Gauthier, S., Bourikas, L., Al-Atrash, F., Bae, C., Chun, C., de Dear, R., Hellwig, R.T., Kim, J., Kwon, S., Mora, R., Pandya, H., Rawal, R., Tartarini, F., Upadhyay, R., Wagner, A. (2020). The colours of comfort: From thermal sensation to person-centric thermal zones for adaptive building strategies. Energy and Buildings, 216, 109936. 10.1016/j.enbuild.2020.109936
5
Hawila, A. A.-W., Merabtine, A., Chemkhi, M., Bennacer, R., Troussier, N. (2018). An analysis of the impact of PMV-based thermal comfort control during heating period: A case study of highly glazed room. Journal of Building Engineering, 20, 353-366. 10.1016/j.jobe.2018.08.010
6
Humphreys. M.A., Rijal, H.B., Nicol, J.F. (2013). Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Building and Environment. 63, 40-55. 10.1016/j.buildenv.2013.01.024
7
Kim, S.K., Hon, W.H., Hwang, J.H., Jung, M.S., Park, Y.S. (2020). Optimal Control Method for HVAC Systems in Offices with a Control Algorithm Based on Thermal Environment. Buildings, 10(5), 95. 10.3390/buildings10050095
8
Kim, S.K., Ryu, J.H., Seo, H.C., Hong, W.H. (2022). Understanding Occupants' Thermal Sensitivity According to Solar Radiation in an Office Building with Glass Curtain Wall Structure. Buildings, 12(1), 58. 10.3390/buildings12010058
9
Kumar, S., Mathur, J., Mathur, S., Singh, M.K., Loftness, V. (2016). An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India, Building and Environment, 109, 135-153. 10.1016/j.buildenv.2016.09.023
10
Rupp, R.F., Kim, J.S. Ghisi, E., Dear, R.D. (2019). Thermal sensitivity of occupants in different building typologies: The Griffiths Constant is a Variable. Energy and Buildings, 200, 11-20. 10.1016/j.enbuild.2019.07.048
11
Schweiker, M., Abdul-Zahra, A., André, M., Al-Atrash, F., Al-Khatri, H. et al. (2019). The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Sci. Data, 6, 1-10. 10.1038/s41597-019-0272-631772199PMC6879730
12
Schweiker , M., André, M., Al-Atrash, F., Al-Khatri, H., et al. (2020). Evaluating assumptions of scales for subjective assessment of thermal environments - do laypersons perceive them the way, we reserachers believe?. Energy and Buildings, 211, 109761. 10.1016/j.enbuild.2020.109761
13
Wang, Z., Hong, T. (2020). Learning occupants' indoor comfort temperature through a Bayesian inference approach for office buildings in United States, Renewable and Sustainable Energy Reviews, 119, 109593. 10.1016/j.rser.2019.109593
14
Yang, L., Zheng, W., Mao, Y., Lam, J.C., Zhai, Y. (2015). Thermal adaptive models in built environment and its energy implications in Eastern China, Energy Procedia, 75, 1413-1418. 10.1016/j.egypro.2015.07.237
15
Yoganathan, D., Kondepudi, S., Kalluri, B., Manthapuri, S. (2016). Optimal sensor placement strategy for office buildings using clustering algorithms. Energy and Buildings, 158, 1206-1225. 10.1016/j.enbuild.2017.10.074
16
Zhang, N., Cao, B., Wang, Z., Zhu, Y., Lin, B. (2017). A comparison of winter indoor thermal environment and thermal comfort between regions in Europe, North America, and Asia. Build. Environ, 117, 208-217. 10.1016/j.buildenv.2017.03.006
17
Griffiths, I.D. (1988). Sloar energy applications to buildings and solar radiation data, in: T.C., Steemers (Ed.). Proceedings of the EC Contractors' Meeting Held in Brussels, Belgium, 1 and 2 October 1987, Dordrecht: Springer, Netherlands, 110-114.
18
Schweiker, M., Wagner, A. (2018). Interactions between thermal and visual (dis-) comfort and related adaptive actions through cluster analyses. BauSIM2018-7. Deutsch-Österreichische IBPSA-Konferenz Tagungsband, Karlsruhe.
19
ASHRAE 55-2013. (2013). Ashrae Handbook: Fundamentals, Atlanta, GA.
20
ISO, ISO 10551. (2001). Ergonomics of the thermal environment - Assessment of the influence of the thermal environment using subjective judgment scales.
Information
  • Publisher :Korean Institute of Architectural Sustainable Environment and Building Systems
  • Publisher(Ko) :한국건축친환경설비학회
  • Journal Title :Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • Journal Title(Ko) :한국건축친환경설비학회논문집
  • Volume : 16
  • No :3
  • Pages :206-218
  • Received Date : 2022-05-09
  • Revised Date : 2022-06-27
  • Accepted Date : 2022-06-29
Journal Informaiton Journal of Korean Institute of Architectural Sustainable Environment and Building Systems Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close