All Issue

2021 Vol.15, Issue 3 Preview Page

Research Article

June 2021. pp. 252-264
Abstract
References
1
Field, K., Deru, M., Studer, D. (2010). Using DOE commercial reference buildings for simulation studies. Proceedings of SimBuild, 4(1), 85-93.
2
Jeon, B.K., Kim, E.J. (2017). Short-Term Load Prediction Using Artificial Neural Network Models. Korean Journal of Air-Conditioning and Refrigeration Engineering, 29(10), 497-503.
3
Jeong, J.H., Chae, Y.T. (2017). Assessment of Input Variable Importance and Machine Learning Model Selection for Improving Short Term Load Forecasting on Different Building Types. Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, 11(6), 586-598. 10.12972/jkiaebs.20170027
4
Kim, J.H., Seong, N.C., Choi, W. (2019a). Cooling load forecasting via predictive optimization of a nonlinear autoregressive exogenous (NARX) neural network model. Sustainability, 11(23), 6535. 10.3390/su11236535
5
Kim, J.H., Seong, N.C., Choi, W. (2019b). Modeling and optimizing a chiller system using a machine learning algorithm. Energies, 12(15), 2860. 10.3390/en12152860
6
Millman, K.J., Aivazis, M. (2011). Python for Scientists and Enginners. Computing in Science & Engineering, 13(2), 9-12. 10.1109/MCSE.2011.36
7
Oliphant, T.E. (2007). Python for Scientific Computing. Computing in Science & Engineering, 9(3), 10-20. 10.1109/MCSE.2007.58
8
Ozgur, C., Colliau, T., Rogers, G., Hughes, Z., Myer, T.B. (2017). MatLab vs. Python vs. R. Journal of Data Science, 15(3), 355-372. 10.6339/JDS.201707_15(3).0001
9
Seong, N.C., Kim, J.H., Choi, W. (2019). Optimal Control Strategy for Variable Air Volume Air-Conditioning Systems Using Genetic Algorithms. Sustainability, 11(18), 5122. 10.3390/su11185122
10
Seong, N.C., Kim, J.H., Choi, W.C. (2020). Determination of optimal variables for chilled water loop in central air-conditioning system using genetic algorithms. Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, 14(1), 66-79.
11
Shin, H.S., Park, C.S. (2017). Development of a Machine Learning Model for a Chiller using Random Forest Algorithm and Data Pre-processing. Journal of the Architectural Institute of Korea Structure & Construction, 33(9), 67-74.
12
Yoon, Y.R., Shin, S. H., Moon, H. J. (2017). Analysis of Building Energy Consumption Patterns according to Building Types Using Clustering Methods. Journal of The Korean Society of Living Environmental System, 24(2), 232-237. 10.21086/ksles.2017.04.24.2.232
13
Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, B., Liu, B., Halverson, M., Winiarski, D., Rosenberg, M., Yazdanian, M., Huang, J., Crawley, D. (2011). U.S. Department of Energy Commercial Reference Building Models of the National Building Stock (NREL/TP-5500-46861). National Renewable Energy Laboratory Technical Report. 10.2172/1009264
14
ASHRAE. (2002). ASHRAE Guideline 14-2002: measurement of energy and demand savings. American Society of Heating, Refrigerating and Air-conditioning Engineers, Atlanta, GA.
15
Commercial Prototype Building Models-Building Energy Codes Program. Available at: https://www.energycodes.gov/development/commercial/prototype_models.
Information
  • Publisher :Korean Institute of Architectural Sustainable Environment and Building Systems
  • Publisher(Ko) :한국건축친환경설비학회
  • Journal Title :Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • Journal Title(Ko) :한국건축친환경설비학회 논문집
  • Volume : 15
  • No :3
  • Pages :252-264
  • Received Date :2021. 04. 19
  • Revised Date :2021. 06. 11
  • Accepted Date : 2021. 06. 16
Journal Informaiton Journal of Korean Institute of Architectural Sustainable Environment and Building Systems Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close