All Issue

2025 Vol.19, Issue 4 Preview Page

Research Article

30 August 2025. pp. 149-159
Abstract
References
1

Assaad, C.K., Devijver, E., Gaussier, E. (2022). Survey and evaluation of causal discovery methods for time series. Journal of Artificial Intelligence Research, 73, 767-819.

10.1613/jair.1.13428
2

Chen, X., Abualdenien, J., Singh, M.M., Borrmann, A., Geyer, P. (2022). Introducing causal inference in the energy-efficient building design process. Energy and Buildings, 277, 112583.

10.1016/j.enbuild.2022.112583
3

Choi, K., Park, J., Kim, D.W., Joe, J. (2024). Development of a Regression Model for Evaluating Energy Consumption Performance of Daycare Centers Using Open Public Data. Journal of the Korean Solar Energy Society, 44(6), 35-48.

10.7836/kses.2024.44.6.035
4

Eberhardt, F. (2017). Introduction to the foundations of causal discovery. International Journal of Data Science and Analytics, 3, 81-91.

10.1007/s41060-016-0038-6
5

Kim, D.W., Kim, Y.M., Lee, S.E. (2019). Development of an energy benchmarking database based on cost-effective energy performance indicators: Case study on public buildings in South Korea. Energy and Buildings, 191, 104-116.

10.1016/j.enbuild.2019.03.009
6

Kim, H.J., Joo, H.B., Kim, D.W., Heo, Y.S. (2024a). Examining the Influencing Factors of Base and Heating Energy Use Intensities for the Energy Benchmarking of School Buildings. Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, 18(6), 491-501.

7

Kim, J.H., Kim, S., Park, Y.J., Kim, D.W., Kim, E. (2024b). Correlation Analysis Between Non-Energy Public Data of Residential Buildings and Annual Energy Consumption by Usage. Korea Journal of Air-Conditioning and Refrigeration Engineering, 36(12), 606-618.

10.6110/KJACR.2024.36.12.606
8

Ko, Y.D., Park, C.S. (2021). Parameter estimation of unknown properties using transfer learning from virtual to existing buildings. Journal of Building Performance Simulation, 14(5), 503-514.

10.1080/19401493.2021.1972159
9

Mun, J., Park, C.S. (2025). Beyond correlation: A causality-driven model for indoor temperature control. Energy and Buildings, 338, 115739.

10.1016/j.enbuild.2025.115739
10

Nogueira, A.R., Pugnana, A., Ruggieri, S., Pedreschi, D., Gama, J. (2022). Methods and tools for causal discovery and causal inference. Wiley interdisciplinary reviews: data mining and knowledge discovery, 12(2), e1449.

10.1002/widm.1449
11

Shin, H.R., Kim, H.G., Kim, D.W. (2024). DataNet: A Framework for Linking Nationwide Building Energy Datasets to Support Effective Performance Analysis. Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, 18(6), 564-575.

12

Spirtes, P., Glymour, C., Scheines, R., Kauffman, S., Aimale, V., Wimberly, F. (2000). Constructing Bayesian network models of gene expression networks from microarray data. DOI: 10.1184/r1/6491291.v1.

10.1184/r1/6491291.v1
13

Zheng, Y., Huang, B., Chen, W., Ramsey, J., Gong, M., Cai, R., Shimizu, S., Spirtes, P., Zhang, K. (2024). Causal-learn: Causal discovery in python. Journal of Machine Learning Research, 25(60), 1-8.

14

Zhou, A., Wang, S., Chen, B. (2023). Impact of new energy demonstration city policy on energy efficiency: evidence from China. Journal of Cleaner Production, 422, 138560.

10.1016/j.jclepro.2023.138560
15

Kim, H.G., Shin, H., Kim, D.W. (2024c). DataNet Project: A Framework For Linking Multi- Faceted Building Energy Datasets For Effective Performance Analysis, ASim 2024. The 5th Asia Conference of the IBPSA, Osaka, Japan, Dec 8-10, 2024.

16

Meek, C. (2013). Causal inference and causal explanation with background knowledge. arXiv preprint arXiv:1302.4972.

17

Spirtes, P.L., Meek, C., Richardson, T.S. (2013). Causal inference in the presence of latent variables and selection bias. arXiv preprint arXiv:1302.4983.

18

Bareinboim, E., Correa, J.D., Ibeling, D., Icard, T. (2022). On Pearl’s hierarchy and the foundations of causal inference. In Probabilistic and causal inference: the works of judea pearl, 507-556.

10.1145/3501714.3501743
19

Spirtes, P., Glymour, C., Scheines, R. (2001). Causation, prediction, and search. MIT press.

10.7551/mitpress/1754.001.0001
Information
  • Publisher :Korean Institute of Architectural Sustainable Environment and Building Systems
  • Publisher(Ko) :한국건축친환경설비학회
  • Journal Title :Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • Journal Title(Ko) :한국건축친환경설비학회논문집
  • Volume : 19
  • No :4
  • Pages :149-159
  • Received Date : 2025-08-08
  • Revised Date : 2025-08-21
  • Accepted Date : 2025-08-21
Journal Informaiton Journal of Korean Institute of Architectural Sustainable Environment and Building Systems Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
  • NRF
  • KOFST
  • KISTI Current Status
  • KISTI Cited-by
  • crosscheck
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close